Feeds:
Posts
Comments

Archive for August, 2020


A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted furthermore as the coincidence of model and reality. The paper discusses the option and fact of that coincidence it its base: the fundamental postulate formulated by Niels Bohr about what quantum mechanics studies (unlike all classical science). Quantum mechanics involves and develops further both identification and disjunctive distinction of the global space of the apparatus and the local space of the investigated quantum entity as complementary to each other. This results into the analogical complementarity of model and reality in quantum mechanics. The apparatus turns out to be both absolutely “transparent” and identically coinciding simultaneously with the reflected quantum reality. Thus, the coincidence of model and reality is postulated as necessary condition for cognition in quantum mechanics by Bohr’s postulate and further, embodied in its formalism of the separable complex Hilbert space, in turn, implying the theorems of the absence of hidden variables (or the equivalent to them “conservation of energy conservation” in quantum mechanics). What the apparatus and measured entity exchange cannot be energy (for the different exponents of energy), but quantum information (as a certain, unambiguously determined wave function) therefore a generalized law of conservation, from which the conservation of energy conservation is a corollary. Particularly, the local and global space (rigorously justified in the Standard model) share the complementarity isomorphic to that of model and reality in the foundation of quantum mechanics. On that background, one can think of the troubles of “quantum gravity” as fundamental, direct corollaries from the postulates of quantum mechanics. Gravity can be defined only as a relation or by a pair of non-orthogonal separable complex Hilbert space attachable whether to two “parts” or to a whole and its parts. On the contrary, all the three fundamental interactions in the Standard model are “flat” and only “properties”: they need only a single separable complex Hilbert space to be defined.

Key words: confinement, entanglement, general relativity, model, reality, quantum gravity, quantum information

The paper as a PDF or @ EasyChair, @ SocArxive, @ SSRN, or @ PhilPapers

Read Full Post »


The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary particle, neutrino, on the ground of energy conservation in quantum mechanics, afterwards confirmed experimentally. Bohr recognized his defeat and Pauli’s truth: the paradigm of elementary particles (furthermore underlying the Standard model) dominates nowadays. However, the reason of energy conservation in quantum mechanics is quite different from that in classical mechanics (the Lie group of all translations in time). Even more, if the reason was the latter, Bohr, Cramers, and Slatters’s argument would be valid. The link between the “conservation of energy conservation” and the problem of hidden variables is the following: the former is equivalent to their absence. The same can be verified historically by the unification of Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics in the contemporary quantum mechanics by means of the separable complex Hilbert space. The Heisenberg version relies on the vector interpretation of Hilbert space, and the Schrödinger one, on the wave-function interpretation. However the both are equivalent to each other only under the additional condition that a certain well-ordering is equivalent to the corresponding ordinal number (as in Neumann’s definition of “ordinal number”). The same condition interpreted in the proper terms of quantum mechanics means its “unitarity”, therefore the “conservation of energy conservation”. In other words, the “conservation of energy conservation” is postulated in the foundations of quantum mechanics by means of the concept of the separable complex Hilbert space, which furthermore is equivalent to postulating the absence of hidden variables in quantum mechanics (directly deducible from the properties of that Hilbert space). Further, the lesson of that unification (of Heisenberg’s approach and Schrödinger’s version) can be directly interpreted in terms of the unification of general relativity and quantum mechanics in the cherished “quantum gravity” as well as a “manual” of how one can do this considering them as isomorphic to each other in a new mathematical structure corresponding to quantum information. Even more, the condition of the unification is analogical to that in the historical precedent of the unifying mathematical structure (namely the separable complex Hilbert space of quantum mechanics) and consists in the class of equivalence of any smooth deformations of the pseudo-Riemannian space of general relativity: each element of that class is a wave function and vice versa as well. Thus, quantum mechanics can be considered as a “thermodynamic version” of general relativity, after which the universe is observed as if “outside” (similarly to a phenomenological thermodynamic system observable only “outside” as a whole). The statistical approach to that “phenomenological thermodynamics” of quantum mechanics implies Gibbs classes of equivalence of all states of the universe, furthermore representable in Boltzmann’s manner implying general relativity properly … The meta-lesson is that the historical lesson can serve for future discoveries.

Key words: BKS theory. class of equivalence, energy conservation in quantum mechanics, fourth uncertainty relation, general relativity and quantum gravity, Gibbs and Boltzmann thermodynamics, Heisenberg’s matrix mechanics, pseudo-Riemannian space, Schrödinger’s wave mechanics, separable complex Hilbert space, unitarity

The paper as a PDF or: @ EasyChair, @ SocArxiv, @ SSRN, @ PhilPapers

Read Full Post »


The CMI Millennium “P vs NP Problem” can be resolved e.g. if one shows at least one counterexample to the “P=NP ” conjecture. A certain class of problems being such counterexamples will be formulated. This implies the rejection of the hypothesis “P=NP” for any conditions satisfying the formulation of the problem. Thus, the solution “P≠NP ” of the problem in general is proved. The class of counterexamples can be interpreted as any quantum superposition of any finite set of quantum states. The Kochen-Specker theorem is involved. Any fundamentally random choice among a finite set of alternatives belong to “NP’ but not to “P”. The conjecture that the set complement of “P” to “NP” can be described by that kind of choice exhaustively is formulated.

 

 

 

The paper as a PDF, a video, or: @ Arxiv, @ Frenxiv, @ PhilPapers, @ EasyChair, @ SSRN

Read Full Post »


The structure and content of the presentation:
I A formal model of divination by means of “I Ching“
II The “I Ching” divination in terms of quantum measurement
III The scientific condition for any “I Ching“ divination to be relevant
IV How might one write a book by “I Ching“?
V How might “I Ching” write another book?
VI A few excerpts from “The Man in the High Castle” with or by “I Ching”
VII The precedent of Hermann Hesse’s “Das Glasperlenspiel” (“The Glass Beed Game”)

Philip K. Dick, “The Man in the High Castle,” Berkeley, 1982 (reprint) ISBN: 0-425-05051-3

The presentation also as a PDF, a video or as slides @ EasyChair

Read Full Post »